NIH - CMRR 2003

Task-Oriented Exercise After Stroke:

Mechanisms of Neuromuscular Plasticity

Richard Macko, M.D.

Baltimore VA Medical Center and

University of Maryland School of Medicine

Stroke: A Major Public Health Issue

780,000 strokes/yr in U.S. Chronic deficits in 75%.

- ◆ Conventional rehabilitation- front loaded during the sub-acute recovery period (<3 months); emphasizes recovery of ADL function & prevention of complications.
- **♦ Patients become physically inactive, which compounds disability by physical deconditioning and learned non-use.**

No evidence-based recommendations to promote regular exercise in stroke population.

Percent of stroke patients with stationary gait function and leg motor strength recovery during conventional rehabilitation

N=804

95% get no better after 11 weeks with routine care.

What may be deficient in conventional rehabilitation models?

- 1. Is the exercise intensity enough?
- Typical 51 minute PT session, < 3 minutes at low aerobic intensity (>40% HRR)

McKay Lyons et al. 2002

- 2. Is repetition adequate?
- 20-30 minutes practice needed to produce short-term cortical motor adaptations in normal adults.

Classen 1998

- 3. Do we exploit the full time window for plasticity?
- **Extends beyond 3-6 months**

OUTLINE

- I. What is biological basis for task-oriented exercise after stroke?
- Peripheral Mechanisms cardiovascular deconditioning and muscle abnormalities contribute to disability.
- Central Neural Mechanisms task repetition is critical for promoting motor learning by neural plasticity.
- II. What is the evidence that task-oriented exercise can improve function and fitness in chronic stroke?

How unfit are chronic stroke patients?

- We tested fitness levels & energy demands of gait in53 patients
- 44 men, 9 women
- ♦ Mean Age 65 ± 8 years
- Mean 3 years post-stroke
- Hemiparetic gait, not wheelchair bound.

ECONOMY OF GAIT

- Purpose estimate the energy demands of hemiparetic gait.
- Protocol Treadmill walk at 75% of self-selected floor-walk pace, no incline for 9 minutes.
- Rate of V0₂ calculated from final 3 minutes at steady state oxygen kinetics.

Chronic stroke patients have diminished fitness reserve

Low Peak Fitness Levels

- $V0_2$ Peak = 14.7 ± 4 ml/kg/min;
- 44% below sedentary controls.

Poor Economy of Gait:

• Mean rate $V0_2$ 9.7 \pm 2 ml/kg/min

Relationship of peak VO₂ to thigh muscle mass (DXA)

CT Scan of the Mid-Thigh Cross-Sectional Muscle Area in a Stroke Patient

Muscle area is 20% lower in hemiparetic thigh (N=30, P<.001).

Changes in Paretic Leg Skeletal Muscle Phenotype after Stroke

Myosin Heavy Chain Profile

Increased fast MHC isoforms in paretic leg vastus lateralis.

Paretic leg = *67% Unaffected leg = 51% (*p<.001, N=15)

Fast MHC is prone to fatigue, and insulin resistant.

DeDeyne, submitted

Rationale for exercise after stroke:

- Physical deconditioning threatens the capacity of stroke patients to meet the high energy demands of hemiparetic gait.
- ◆ Patients with the most muscular wasting (sarcopenia) in their thighs are at greatest risk for functional aerobic impairment.
- Changes in muscle may contribute to motor weakness, fatigue, and increased cardiovascular disease risk by promoting insulin resistance.

Biomechanical basis for treadmill to promote locomotor re-learning

TM Improves Gait Symmetry

- •20% higher stance:swing ratio on P leg; 20% lower on NP leg.
- •30% improved symmetry of insole forces.
- •40% less cycle-cycle variability.

Initial pilot and feasibility studies of treadmill (TM) training

HYPOTHESIS

6 months TM training will improve fitness and function in chronic hemiparetic stroke?

RESULTS

•Reduces energy demands of HP gait 16%

Macko 1997

•Improves peak fitness 10% & work load 39%

Macko 2001

Improves floor walking velocity by 21%

Silver 2000

•Increases P leg strength 50% & balance.

Smith 1999, Smith 2000

Study Limitations

Non - controlled. No comparison to conventional care.

RANDOMIZED STUDY Treadmill AEX vs Active Control

Purpose: Determine whether 6 months TM aerobic training (60 -70% HRR) improves fitness, economy of gait, and floor walking in chronic stroke patients, compared to controls receiving a dose-matched form of conventional care.

◆ Active Controls: 45 minutes stretching exercises; 5 minutes warm-up of low intensity treadmill walking (30-40% HRR).

SUBJECTS: Clinical & Demographic Features

	TM	Control
Males : Females	18:7	14:6
Age (yrs)	65 ± 10	63 ± 8
Hemisphere (R : L)	12:13	9:11
◆ Time since stroke (M)	32 ± 30	42 ± 65
Assistive Device		
- None	9 (37.5%)	5 (24%)
 Single point cane 	10 (37.5%)	11 (57%)
 Quad cane/walker 	6 (25%)	4 (19%)
Floor Walking Speed	1.4 ± 0.7	1.5 ± 0.7
(range MPH)	(0.25 - 2.7)	(0.19 - 2.6)

RESULTS: Effects of Treadmill Training on Fitness after Stroke

Effects of Treadmill Training on Walking Performance

*P<.01 Within groups

CONCLUSIONS - Randomized Study

- I. Treadmill & stretching/low intensity walking both improve economy of gait and 30' floor walk velocity.
- II. Only TM aerobic training improves cardiovascular metabolic fitness & 6-minute floor walk performance.

Biological Mechanisms?

◆ Studies investigating the hypothesis that TM exercise mediates central neuroplasticity are ongoing

Transcranial Magnetic Stimulation (TMS) -Motor evoked potentials from paretic quadriceps before and after a single 20 minute treadmill session:

Trained Patients – Increased MEP amplitude paretic VL muscle.

BOLD fMRI During Knee Movement in a Stroke Patient

Green - activation of motor cortex during movement of unaffected knee.

Red - activation of motor cortex during movement of the paretic knee.

A. Luft,, G Smith, L. Forrester, R Macko, A Goldberg, D. Hanley

Future Research: Robotics assisted exercise rehabilitation

MIT- ankle robotics module

- **♦** Impedance controlled
- 6 degrees of freedom
- Programmable
- **Evaluate applications in stroke and other neurological conditions**

MIT Newman Lab

Igo Krebs; Neville Hogan, Jason Wheeler.

Thanks to Collaborators

University of Maryland and Baltimore VA Physical Therapy

Gerald V. Smith, Ph.D., P.T. Larry Forrester, Ph.D.

◆ Jill Whitall, Ph.D. Sandy Waller, M.S., P.T.

Michelle Harris-Love, P.T.
 Patrick DeDeyne, Ph.D.

Baltimore VA & University Maryland Gerontology, Neurology and Rehabilitation

Andrew P. Goldberg, M.D.

Kenneth H. Silver, M.D.

Alice Ryan, Ph.D.

MIT -Newman Laboratory for Biomechanics and Human Rehabilitation

◆ H. Igo Krebs, Ph.D. Neville Hogan, Ph.D. Jason Wheeler

Abteilung fur Neurologie, Universitat Tubingen, Germany, Andi Luft, M.

<u>Johns Hopkins University - Brain Injury Outcomes Division - Dan Hanley, M.D.</u>

Experimental Design

Non-controlled study with measures of...

◆ Fitness - V0₂ peak, economy of gait.

 Functional Mobility - Timed floor walks, Get-Up and Go, translational balance perturbation.

Strength- Isokinetic dynamometry.

....at baseline and after exercise training.